Queensland Water Modelling Network Programs and Projects

    Active programs

    QWMN External Engagement Program

    The QWMN has initiated an External Engagement Program (PDF, 47.2KB) (EEP) to help build the capacity of water modelling and user expertise in Queensland, facilitate engagement across the full range of actors in the Queensland water-modelling ecosystem, and stimulate innovation in all aspects of water modelling and use. A consortium, led by the International Water Centre, is delivering a program of work that complements QWMN activities and investments to facilitate greater collaboration among water modellers, users and decision makers across Queensland, creating a community of water modelling excellence.

    A key initiative is the QWMN Innovation Program where Innovation Associates register for PhD degrees then work directly with industry partners in local and state government and the private sector, to develop practical solutions to state, regional and local economic, environmental and social challenges.

    Other activities include the annual QWMN Forum, a state-wide skills and knowledge audit to guide investment in education, training and workforce capability growth, a Hack, and a mentoring program to nurture and guide students into water modelling as a career path.  A dedicated website to showcase the Program and its activities is being developed.

    Consortium members are the Australian Institute of Marine Science, Griffith University, the International Water Centre, Queensland Cyber Infrastructure Foundation, Queensland University of Technology, The University of Queensland, and the University of Southern Queensland.

    Active projects

    (New) Stream bank erosion in the Great Barrier Reef catchments

    This project will investigate the feasibility of applying alternative approaches to assess stream bank erosion rates in the Great Barrier Reef catchments. Alluvium is leading the project with support from Griffith University, Reef Catchments, Fitzroy Basin Association and Wildland Hydrology. Improving stream bank erosion rate prediction in Great Barrier Reef catchments would deliver a better understanding of the key drivers of water quality, informing targeted mitigation strategies to improve water quality in Queensland. Read the project proposal Prediction of stream bank erosion in the Great Barrier Reef catchments (PDF, 308.4KB) .

    (New) Visualisation of coupled economic and Queensland water quality models

    This project will develop a cloud-based platform to couple water quality and economic models to assess natural resource management investment options for the Great Barrier Reef region. Truii Pty Ltd (in collaboration with the Office of the Great Barrier Reef) are developing this platform based on two existing custom tools: the Great Barrier Reef Foundation Reef Planning Investment Tool and the Seqwater Catchment Investment Decision Support System. The platform will use data management functionality to enable revision and updating of the latest available water quality and economic modelling data.

    (New) Model data portal to deliver catchment modelling data to end users

    Successful modelling programs receive constant requests from end users for model results. These requests often require intensive processing. Truii Pty Ltd, in collaboration with the Office of the Great Barrier Reef, will develop a web-based model data portal to enable the delivery of catchment modelling results from the Paddock to Reef program. Data requesters will be able to create and record data queries which will generate data summaries for visualisation and download.

    (New) Addressing uncertainty in coupled water models using machine learning techniques

    Linking models of varying complexity and scope can lead to uncertainties from each individual model, magnifying the uncertainty of final predictions. Data driven models and ensemble machine learning techniques can be used to improve predictions of water quality model outputs. BMT are leading this project in partnership with the University of Western Australia and Healthy Land and Water. The outcome is to develop capability hybridising process-based and data driven water models to improve predictions of model outputs in the context of a south-east Queensland catchment. Read the project proposal Addressing cumulative uncertainty in linked catchment and receiving water models using machine learning techniques (PDF, 627.9KB) .

    Critical review of climate change in Queensland water modelling

    This project aims to assess Queensland’s current ability to incorporate climate variability and climate change projections in water models. Bringing together an experienced team of hydrologists, hydroclimate scientists, water quality scientists and practitioners, Alluvium Consulting Australia is delivering the project in partnership with the Commonwealth Scientific and Industrial Research Organisation (CSIRO) and University of Newcastle. Using the best available science, the project will provide a clear pathway to consistent, robust modelling approaches for assessing climate change in Queensland water models. Read the project proposal Critical review of climate change and water modelling in Queensland (PDF, 2.2MB) .

    In April 2019, Queensland Government were briefed on the latest science and best practice for the treatment of climate change and climate variability in water modelling, and to discuss end user needs and current approaches from a water modelling and water resources management perspective. The discussion centred around four themes which will provide the basis for project recommendations and a strategic investment portfolio:

    • Strengthening climate science knowledge and data inputs for water models
    • Improving the ability of water models to incorporate climate science
    • Developing a framework and/or guidelines to bridge the gap from climate science to decision-making
    • Building Queensland’s capacity and capability to understand and apply climate science to inform better decisions and outcomes.

    The outcomes of the workshop, an interview process with key modelling, planning and policy groups, and four modelling case studies provide multiple lines of evidence for developing investment priorities. The QWMN will coordinate an integrated response to the final project report and investment priorities recommendations.

    Prediction of daily rainfall and runoff peak rates to inform hillslope erosion prediction and improve water quality modelling

    This project will provide data improvements and estimation techniques that might allow hillslope erosion predictions of the Paddock to Reef catchment modelling for Reef Plan (for grazing lands) to be more sensitive to cover and management improvements. Delivered by Griffith University, this project will include data products for predictions of runoff depth and the peak runoff rate, at time and spatial scales for improved P2R Catchment modelling for Reef Plan.

    Queensland Water Modelling Network (QWMN) Fellow

    Based at the Australian Rivers Institute, Griffith University, the QWMN Fellow will undertake research that improves model functionality and capability between the catchment and its receiving water environments, having consideration for the influence of land use/land management, climate change and policy interventions to sustain the Great Barrier Reef. The work is initially focusing on the riverine and estuarine environment, building on knowledge, capacity and models that have been developed for the Great Barrier Reef to establish strategic estuarine, gully and streambank modelling capability.

    Related publications:

    Supporting regional groundwater supply security assessments in Queensland

    Groundwater is a common water supply source for many rural and urban communities within Queensland, with many towns either wholly or partly dependent on groundwater. However, evaluation of this resource is often difficult, making risk assessment and management challenging. Piloted in Monto and Biggenden but with potential statewide relevance, the project will deliver a shared understanding of the capability of a community’s water supply system to meet current and forecast future urban water demand, and the associated water supply security risks.

    Completed projects

    Improved Source modelling to support catchment management investment decisions

    Source provides a powerful, flexible platform for catchment modelling, but its existing default constituent models (including constituent generation, filtration and transport) are inadequate for catchment management investment decisions. This project, delivered under a collaborative research agreement with ANU, and co-funded by the Department of Natural Resources, Mines and Energy, developed and implemented fit-for-purpose constituent models.

    Improved model governance and management for HowLeaky

    HowLeaky is a one dimensional, soil water balance model that allows users to explore the impacts of soil physical properties, climate, management practices and crop growth on the soil water balance, runoff/erosion and pesticide and nutrient losses. This project, delivered through a collaborative research agreement with USQ, implemented recommendations from the independent review of the HowLeaky model to improve its governance, version control and long-term stability. Read the project report Developing HowLeaky platform for improved governance (PDF, 1.9MB) . A HowLeaky manual has also been developed to support existing and new users of the model.

    Improved model-based decision support through simulator-independent parallelism

    The new generation of in-house and cloud-based computing hardware presents previously unavailable options for massive parallelism. Easily implemented parallelism at the model run level can provide a means through which environmental modelling can progress towards its decision-support potential. This project, delivered by Watermark Numerical Computing, develops a new run manager with a front-end application programmers interface (API) callable from multiple languages and a back end optimised for use in office network environments, and on Windows/Linux high-performance computing clusters. Read the project report Uncertainty analysis and reduction through simplified model run parallelisation (PDF, 647.2KB) .

    Tracking the effectiveness of gully management at reducing bioavailable nutrients

    Modelling dissolved inorganic nitrogen (DIN) generation from eroded sediment helps inform on-ground management interventions such as gully rehabilitation in Great Barrier Reef catchments. This project contributed to the development of a standard methodology for estimating DIN generation from eroded sediment for application across a range of Paddock to Reef catchment monitoring programs. Led by the Catchment and Riverine Processes team Department of Environment and Science (DES), the project was a collaborative effort from numerous organisations: Department of Natural Resources, Mines and Energy, TropWATER, James Cook University; Precision Erosion and Sediment Management Research Group, Griffith University; CSIRO; Greening Australia; Fruition Environmental; NQ Dry Tropics; Great Barrier Reef Catchment Loads Monitoring Program, DES; Chemistry Centre, DES; Howley Environmental Consulting; Cape York Monitoring Partnership; and the Burdekin Bowen Integrated Floodplain Management Advisory Committee Inc.

    Data management and visualisation to support water quality modelling teams

    Data visualisation capability is seen as fundamental in improving uptake and application of model outputs and recommendations by policy makers and resource managers. This project, delivered by Yorb, and co-funded by the Office of the Great Barrier Reef, developed standardised templates for catchment and paddock models, developed standardised data extraction capability and refined the dynamic visualisation layers.

    Improvements to the Dynamic SedNet model

    The Dynamic SedNet model, which underpins Paddock to Reef catchment modelling, is implemented as a series of plugins to the eWater Source system. Independent reviews suggested Dynamic SedNet could be more efficiently implemented outside of eWater Source. This project, delivered by Yorb, and co-funded by the Department of Natural Resources, Mines and Energy, has developed an improved and independent implementation of Dynamic SedNet.

    Integrating paddock scale modelling and water Source models

    This project improved the interface between agricultural systems modelling (paddock scale models) and catchment scale water resource/water quality Source models to inform Reef investment decisions and evaluate best management practice implementation effectiveness. Delivered by Alluvium, this project has improved the representation of daily constituent concentrations entering the Reef. Read the project report Integration of Paddock-Scale Modelling and Source (PDF, 15.5MB) .

    Development of an annotated catalogue of water models in use in government

    This project, delivered by Griffith University, developed an annotated catalogue of the major water models in use by government. The QWMN Water Model Catalogue (PDF, 2.3MB) will serve as a reference for new users and non-experts and facilitate broader and appropriate use of water models in policy and decision-making, inside and outside government.

    Enhanced eWater software to inform water resource planning

    The eWater SOURCE modelling framework has been used to report on Great Barrier Reef plan water quality targets progress since 2009. The increasing complexity of the SOURCE modelling framework is severely impacting run time efficiency in parallel with a growing demand for more integrated model outputs. This project, delivered by eWater and co-funded by the Department of Natural Resources, Mines and Energy, has supported improvements to the core eWater software to enhance model run time efficiency, performance and stability.

    Consensus based streambank and gully conceptual models in Queensland

    This project, led by Dr Ian Prosser, synthesised existing knowledge of biophysical processes driving gully, streambank and channel erosion dynamics, focusing on Queensland catchments and conditions, to develop a conceptual framework to support the use of new process knowledge and spatial information to improve the existing modelling framework. Key to the project was a facilitated workshop involving leading Australian researchers in gully and streambank erosion modelling and monitoring.

    Good modelling practice principles of the Queensland Water Modelling Network

    This project delivered under the Queensland Government's collaborative research agreement with ANU developed a reference document – the Queensland Water Modelling Network Good Modelling Practice Principles (PDF, 1.5MB) – which outlines a current and consistent approach to modelling principles for R&D. It is supporting the broader understanding and use of models in the government, private and university sectors.

    Detailed scope of work to support parallelism of models at the simulator level

    The increasing complexity of environmental models coupled with model calibration demands results in an increased requirement for computational resources. This project, delivered through Watermark Numerical Computing, developed a detailed scope of work for the development of a software suite, which supports parallelism of models at the simulator level.